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The first total synthesis and structural determination of benzopyrenomycin
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The first total synthesis and structural determination of benzopyrenomycin has been achieved. This syn-
thesis contains remarkable transformations including cyclization to afford the benzanthrone skeleton,
syn-selective vinylogous Mukaiyama aldol reaction, and radical cyclization with the benzanthrone
attaching the iodoalkane chain.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Structure of benzopyrenomycin (1).
Benzopyrenomycin (1) was isolated as an antitumor from a cul-
ture broth of Streptomyces lavendulae (strain Tü 1668).1 This com-
pound is the first known natural product with a benzo[a]pyrene
framework (Fig. 1). The structure of benzopyrenomycin (1) was
determined by NMR spectra. Although the relative structure of 1
was determined, insufficient amount of the isolated 1 made it
unsuccessful to determine the absolute configuration. Isolation of
rubiginone A2,2 having a similar optical rotation with 1, from the
same culture broth gave presumption of the absolute stereochem-
istry of benzopyrenomycin as shown in Figure 1.1 Interested in the
structure and bioactivities, we embarked the synthesis of 1 to
determine the absolute configuration.

Recently, we have developed stereoselective vinylogous
Mukaiyama aldol reactions using the chiral silyl ketene N,O-acetals
to give c,d-anti-a,b-unsaturated imides.3 For example, the reaction
using vinylketene silyl N,O-acetal 2 with 4-bromobenzaldehyde (3)
gave anti-4 predominantly (Scheme 1).3g The feature of the 1H
NMR spectrum of anti-4 in CDCl3 was the signal of H5, which ex-
isted at d 4.28 ppm with a large coupling constant (J4,5 = 9.0 Hz),
while H5 of syn-4 was present at d 4.85 ppm with a small coupling
constant (J4,5 = 3.0 Hz). During the further studies of the reaction,
we found that 1-formylpyrene (5) reacted with vinylketene silyl
N,O-acetal 2 to give syn-adduct (syn-6) predominantly, of which
H5 was found at d 6.07 ppm with the small coupling constant
(J4,5 = 3.5 Hz).4 Investigation of the origin of the syn-selectivity
has been in progress;5 however, we have decided to apply this phe-
nomenon to the total synthesis of natural products.

Our synthetic plan of benzopyrenomycin (1) is shown in
Scheme 2. Because of the remarkable conjugation system of
benzopyrenomycin (1), C1–C12a bond could be constructed with
iodide 7 in the final stage of the synthesis. The stereogenic
ll rights reserved.

(K.T.).
centers, C2 and C3, would be constructed by our syn-selective
asymmetric induction method using the chiral dienol ether ent-2.
Tetracyclic aldehyde 8 might be synthesized by the introduction of
acetate unit to anthraquinone 9 at C12 position followed by
cyclization.

Total synthesis was started by Diels–Alder reaction with qui-
none 106 and diene 117 (Scheme 3). Treatment of the labile ad-
duct 12 with DBU under air promoted successive reactions
including the elimination of AcOH, aromatization of the right ring,
and air-oxidation to give anthraquinone 9. The regioselectivity of
the Diels–Alder reaction was confirmed by NOE and HMBC of
anthraquinone 9 (Fig. 2). Correlation between H5 and C6 sup-
ported the structure of 9, the desired product. Reduction of 9 with
LiAlH4 followed by IBX oxidation provided the unstable aldehyde
13. The acetate unit for C11–C14 of benzopyrenomycin (1) was
introduced at once by Wittig reaction to afford the stable a,b-
unsaturated ester 14. Benzannulation8 to afford benzanthrone
15 was achieved by absorption of c proton of the a,b-unsaturated
ester 14 with sodium methoxide. Condensation at a position of
the ester formed C10b–C11 bond smoothly to give benzanthrone
15 in high yield. The structure of 15 was confirmed by HMBC and
NOE as shown in Figure 3. Correlation between H12 and C10b
made it clear that the product of this reaction possessed the tet-
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Scheme 1. Vinylogous Mukaiyama aldol reactions using 4-bromobenzaldehyde 3 and 1-formylpyrene 5.
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Scheme 2. Retrosynthetic analysis of benzopyrenomycin (1).
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racyclic structure. Tetracyclic 15 was converted to aldehyde 8 by
one-pot transformation including bromination of the C3 position
and subsequent DMSO oxidation.
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Scheme 3. Reagents and conditions: (a) PhMe, 110 �C, 74%; (b) DBU, PhMe, rt, 76
Ph3P@CHCO2Me, PhMe, 80 �C, 5 h, 83%; (e) NaOMe, MeOH, rt, 12 h, 95%; (f) NBS, AIBN,
Achievement of the total synthesis of benzopyrenomycin (1)
is shown in Scheme 4. Treatment of aldehyde 8 with the chiral
dienol ether ent-2 in the presence of BF3�OEt2 at �60 �C gave
alcohol 16 having the desired stereogenic centers. The coupling
constant between H2 and H3 (J = 3.4 Hz) revealed syn-relation
as expected. The absolute configuration of 16 was determined
by Mosher’s method.9 The hydroxy group of 16 was protected
as TBS ether 17. The double bond cleavage of the a,b-unsatu-
rated imide 17 by ozonolysis was followed by reduction to af-
ford alcohol 18. The primary alcohol 18 was converted to
iodide 7, which was submitted to the radical cyclization to pro-
duce C1–C12a bond. Treatment of 7 with tributyltin hydride
(4 equiv) in the presence of dibenzoyl peroxide (3 equiv) in tol-
uene at 80 �C promoted cyclization10 and sequential oxidation
to provide benzo[a]pyrene 19. The structure of 19 was confirmed
by correlation between H1 and C12 as well as NOE between H2
and the methyl group of TBS (Fig. 4). De-O-protection with
HF�pyridine proceeded smoothly to give benzopyrenomycin (1)
as yellow needles. The spectral data of synthetic 1 including
1H and 13C NMR, IR, and HR-MS were identical with those of
natural product as well as the dextro-rotation of the yellow solu-
tion [synthetic 1: ½a�24

D +25 (c 0.3, CHCl3); lit.1 (natural 1 [a yel-
low solid]) ½a�20

D +38 (c 0.3, CHCl3)].11 Therefore, the absolute
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%; (c) LiAlH4, THF–CH2Cl2, 0 �C, 5 min; IBX, PhMe–DMSO, 50 �C, 1 h, 54%; (d)
CCl4, 80 �C, 1 h, then DMSO, 80 �C, 1 day, 91%.
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Figure 4. Structure of benzo[a]pyrene 19.
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Figure 2. Structure of anthraquinone 9.
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structure of benzopyrenomycin (1) was determined to be
(2R,3S)-configuration.

In conclusion, the first total synthesis and structural determina-
tion of benzopyrenomycin has been achieved. This synthesis con-
tains remarkable transformations including cyclization to afford
benzanthrone skeleton (14?15), syn-selective vinylogous Mukaiy-
ama aldol reaction (8?16), and radical cyclization with the ben-
zanthrone attaching the iodoalkane chain (7?19). The absolute
structure of benzopyrenomycin (1) was determined as (2R,3S)-
configuration.
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Supplementary data

The spectral data of compounds 7, 8, 9, 15, 16, 19, and synthetic
benzopyrenomycin (1), 1H NMR spectrum (600 MHz in CDCl3 and
600 MHz in DMSO-d6), and 13C NMR (150 MHz in CDCl3 and
150 MHz in DMSO-d6) spectrum of synthetic benzopyrenomycin
(1) are available. Supplementary data associated with this article
can be found in the online version at doi:10.1016/j.tetlet.
2009.09.089.
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